sampling module
distanceFilter(pts, distance)
Filter Points within a FeatureCollection by a minimum distance threshold
Source code in src\rlcms\sampling.py
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 |
|
plot_id_global(n, feat)
takes an index number (n) and adds it to current PLOTID property of a feature to ensure PLOTID values are globally unique (necessary for multiple sets of AOI sampling)
Source code in src\rlcms\sampling.py
162 163 164 165 166 167 168 169 |
|
split_train_test(pts, seed)
stratify 80/20 train and test points
Source code in src\rlcms\sampling.py
142 143 144 145 146 147 148 149 150 151 |
|
strat_sample(img, class_band, region, scale, seed, n_points, class_values, class_points, ceo_format=True)
A wrapper for ee.Image.stratifiedSample() with CEO schema formatting if desired Note: This function has been found to be less efficient on EECUs and Memory than those defined above. Use the strat_sample_w_extraction for training data generation strat_sample_no_extraction can be used for testing data generation (predictor bands not required)
Source code in src\rlcms\sampling.py
118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 |
|
strat_sample_from_reference(img, collection, class_band, scale, crs, seed, class_values, class_points)
Generates stratified random sample pts from reference polygons with all bands from input image extracted
Parameters:
Name | Type | Description | Default |
---|---|---|---|
img |
Image
|
image whose bands will be extracted to the sample points |
required |
collection |
FeatureCollection
|
reference polygons FeatureCollection |
required |
class_band |
str
|
property name of the reference (i.e. 'LANDCOVER') |
required |
scale |
int
|
resolution to sample the grid at |
required |
seed |
int
|
random seed |
required |
class_values |
list
|
unique reference labels (e.g. [1,2,3,4]) |
required |
class_points |
list
|
number of points to sample per label (e.g. [100,200,100,200]) |
required |
returns: ee.FeatureCollection of sample points They will contain the properties inherited from the reference polygons, a 'random' property, and all bands from the image as properties.
Source code in src\rlcms\sampling.py
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 |
|
strat_sample_no_extraction(collection, class_band, scale, seed, class_values=None, class_points=None)
Generates stratified random sample pts from reference polygons. Does not extract raster data to the points.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
collection |
FeatureCollection
|
reference polygons FeatureCollection |
required |
class_band |
str
|
property name of the reference (i.e. 'LANDCOVER') |
required |
scale |
int
|
resolution to sample the grid at |
required |
seed |
int
|
random seed |
required |
class_values |
list
|
unique reference labels (e.g. [1,2,3,4]) |
None
|
class_points |
list
|
number of points to sample per label (e.g. [100,200,100,200]) |
None
|
returns: ee.FeatureCollection of sample points They will contain the properties inherited from the reference polygons and a 'random' property
Source code in src\rlcms\sampling.py
179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 |
|
strat_sample_w_extraction(img, collection, scale, crs, class_band, seed, class_values, class_points)
Generates stratified random sample pts from reference polygons with all bands from input image extracted
Parameters:
Name | Type | Description | Default |
---|---|---|---|
img |
Image
|
image whose bands will be extracted to the sample points |
required |
collection |
FeatureCollection
|
reference polygons FeatureCollection |
required |
class_band |
str
|
property name of the reference (i.e. 'LANDCOVER') |
required |
scale |
int
|
resolution to sample the grid at |
required |
seed |
int
|
random seed |
required |
class_values |
list
|
unique reference labels (e.g. [1,2,3,4]) |
required |
class_points |
list
|
number of points to sample per label (e.g. [100,200,100,200]) |
required |
returns: ee.FeatureCollection of sample points They will contain the properties inherited from the reference polygons, a 'random' property, and all bands from the image as properties.
Source code in src\rlcms\sampling.py
220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 |
|