primitives module
Primitives
Source code in src\rlcms\primitives.py
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 |
|
__init__(inputs=None, training=None, class_name=None, asset_id=None)
Construct a Primitives ensemble, provided an input ee.Image stack containing feature bands and a training point FeatureCollection NOTE: land cover typology in your training dataset should be alpha-numerically sorted (Agriculture: 1, Bare Soil: 2, Built: 3) and should not skip label values (1,2,4,5). There may be unexpected results if this is not handled properly first by the user.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
inputs |
str | Image
|
input image stack |
None
|
training |
str | FeatureCollection
|
training data |
None
|
class_name |
str
|
class property containing class labels (i.e. 1, 2, 3), currently only 'LANDCOVER' is supported |
None
|
asset_id |
str
|
Optional, GEE asset path to pre-existing Primitives ee.ImageCollection. Useful for exporting intermediary output approach |
None
|
Returns:
Type | Description |
---|---|
Primitives object |
Source code in src\rlcms\primitives.py
8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 |
|
assemble_max_probability()
Take Image Collection of RF Primitives, perform pixel-wise maximum of all Primitive probability images to return single-band LC image Array computation returns img values from 0 to n-1 due to 0-base indexing, so we .add(1) to match LC strata
Parameters:
Name | Type | Description | Default |
---|---|---|---|
image |
multiband image of probabilities |
required | |
remapNum |
list, list of intergers 0-N matching the number of probability bands |
required | |
originalNum |
list, list of inergers n-N matching the number of probability bands that represent their desired map values |
required |
Returns: ee.Image of Land Cover
Source code in src\rlcms\primitives.py
165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 |
|
export_metrics(metrics_path)
Parse variable importance and OOB Error estimate from trained model, output to local files respectively Currently only works for Primitives objects in memory (not loaded from pre-existing ImgColl)
Source code in src\rlcms\primitives.py
192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 |
|
export_to_asset(collection_assetId=None, scale=None, crs=None, crsTransform=None, maxPixels=None, **kwargs)
Export Primitives to Asset as an ImageCollection
Parameters:
Name | Type | Description | Default |
---|---|---|---|
collection_assetId |
str
|
output ImageCollection asset path |
None
|
scale |
int
|
export scale |
None
|
crs |
str
|
export CRS ('EPSG:4326') |
None
|
crsTransform |
list
|
export CRS Transform |
None
|
maxPixels |
int
|
max Pixels |
None
|
Returns:
Type | Description |
---|---|
None, Submits all Export Image tasks for Primitive collection |
Source code in src\rlcms\primitives.py
217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 |
|
export_to_drive(description, folder, fileNamePrefix, dimensions=None, region=None, scale=None, crs=None, crsTransform=None, maxPixels=None, shardSize=None, fileDimensions=None, skipEmptyTiles=None, fileFormat=None, formatOptions=None, **kwargs)
Export Primitives to Drive as a Multi-band GeoTiff
See rlcms.utils.export_img_to_drive() docs for Args
Returns:
Type | Description |
---|---|
None, Submits all Export Image tasks for Primitive collection |
Source code in src\rlcms\primitives.py
259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 |
|